Advanced Higher - Mathematics of Mechanics

Unit 3

Outcome 1.1 Applying Algebraic Skills	NS	OT	VG
I know how to expand an expression of the form $(ax + by)^n$			
using the binomial expansion where $n \le 7$, using			
$(x+a)^n = \sum_{k=0}^n {n \choose k} x^k a^{n-k} .$			
I can express a proper rational function as a sum of partial			
fractions where the denominator is of the type:			
$\frac{7x+1}{x^2+x-6}$ (linear factors)			
I can express a proper rational function as a sum of partial			
fractions where the denominator is of the type:			
$\frac{5x^2 - x + 6}{x^3 + 3x}$ (irreducible quadratic factor)			
I can express a proper rational function as a sum of partial			
fractions where the denominator is of the type:			
$\frac{3x+10}{x^2+6x+9}$ (repeated factor)			
Reduce an improper rational function to a polynomial and			
a proper rational function by division or otherwise eg.			
$\frac{x^3 + 2x^2 - 2x + 2}{x^2 - 2x + 2}$			
(x-1)(x+3)			

Outcome 1.2 Applying Calculus Skills to Differentiation	NS	OT	VG
I can differentiate functions involving: $\tan x$, $\sec x$, $\csc x$,			
cot x.			
I can differentiate functions involving: e^x , ln x			
I can differentiate functions using the chain rule			
$\left(f(g(x))\right)' = f'(g(x)).g'(x)$			
I can differentiate functions using the product rule			
$\left(f(x)g(x)\right)' = f'(x)g(x) + f(x)g'(x)$			
I can differentiate functions using the quotient rule			
$\left(\frac{f(x)}{x}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{x}$			
$(g(x)) = (g(x))^2$			
I can differentiate functions which require more than one			
application of the chain rule, product rule or quotient rule			
I know that $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$			
I can apply differentiation to simple rates of change eg			
rectilinear motion, optimisation.			

I can use parametric differentiation to find the first and		
second derivatives.		
I can apply differentiation to related rates in problems		
where the functional relationship is given explicitly eg.		
motion in a plane.		
I can solve practical related rates by first establishing a		
functional relationship between appropriate variables.		
I can differentiate functions expressed implicitly eg. find		
$\frac{dy}{dt}$ given $\frac{dx}{dt}$ and the function $x^2 + y^2 = r^2$ and x and y are		
functions of <i>t</i> .		

Outcome 1.3 Applying Calculus Skills to Integration	NS	OT	VG
I know and can use standard results including $\int e^x dx$,			
$\int \frac{1}{x} dx, \int \sec^2 x dx$			
I can integrate using a substitution when the substitution is			
given.			
I can integrate a simple product or quotient of functions			
when one function is the derivative of the other.			
I can integrate proper rational functions using partial			
fractions.			
I can use one or repeated applications of integration by			
parts.			
I can apply integration to a range of physical situations			
including to evaluate areas, volumes by revolution and the			
centre of mass of a uniform lamina bounded by curves.			

Outcome 1.4 Applying Calculus Skills to Differential	NS	OT	VG
Equations			
I can find a general solution of a first order differential			
equation where the variables can be separated.			
I can solve a linear first order differential equation using an			
Integrating Factor.			
I can solve second order homogeneous equations where the			
auxiliary equation has real roots.			
I can formulate a simple statement involving rate of change			
as a separable first order differential equation.			
I can find general solutions and solve initial value			
problems, for example, mixing problems, growth and			
decay problems, simple electronic circuits and simple			
examples of damped simple harmonic motion			